University of Cambridge

3D Printing News Alert(For 3D printing a wonder material for the future, graphene)

Posted on Updated on

Graphene is strong, light, thin and flexible. It is the thinnest substance capable of conducting electricity, is an efficient thermal conductor and is optically transparent. Graphene is also more resistant to tearing than steel and is almost impermeable.

For 3D printing a wonder material for the future, graphene.

According to GrapheneCa Head of Business Development David Robles,” Proactive Investors to discuss the technology company that is integrating graphene into the real world using their own environmentally friendly production process.

Robles telling Proactive about the company’s revenue streams and when they are expecting to be profitable.”

According to Hodge,” Adding graphene to plastic composites can improve the tensile strength and stiffness of packaging. Graphene won’t make the material indestructible but it may be possible to reduce packaging size while maintaining the same properties. This has obvious advantages for transporting fragile goods and may also contribute to recycling. Today, recycling plastics degrades the quality of the plastic – it can be recycled an average of three times, but adding graphene to recycled plastics can improve its strength so that it can be recycled many times more. Because they are printed, [the capacitive touch sensors] can be any size or shape and printed in volume.”

According to Chris Jones, technical manager at Novalia, a partner in the EU’s Graphene Flagship, “Our mission statement is to make technology disappear into everyday items.
The ink is supplied by Researchers at the University of Cambridge, University of Manchester and produced by micro fluidization.”

According to Francesca Rosella, co-founder of CuteCircuit, “A dress was designed to illustrate the material’s strength, transparency, and conductivity. The shape and decoration of the dress represent the design of a graphene crystal. We examined graphene under a microscope to see the hexagonal structure and enlarged it to help people understand graphene’s molecular structure.”

According to the TechRadar, “Mobile warming the graphene jacket can also conduct electricity, but creator Vollebak has decided to dampen down this ability to protect wearers. Prototypes of the jacket were so conductive that the wearer could hold a battery in one hand and a light bulb in the other, and have the bulb light up, but Vollebak decided that, although interesting, it was best to play it safe and make the material a little more resistant.”

According to Researchers at Osaka Universities co-author Kazuhiko Matsumoto,” Our biosensor enables highly sensitive and quantitative detection of bacteria that cause stomach ulcers and stomach cancer by limiting its reaction in a well-defined microvolume. They have invented a new biosensor using graphene, which is a material that consists of a one-atom-thick layer of carbon, to detect bacteria like those that attack the stomach lining and that have been linked to stomach cancer. When the bacteria interact with the biosensor, chemical reactions are triggered which are detected by graphene. To enable detection of the chemical reaction products, the researchers used microfluidics to contain the bacteria in tiny droplets that are close to the surface of the sensor.”

https://wp.me/p64ptu-2qz

 

https://youtu.be/IesIsKMjB4Y

 

 

https://eandt.theiet.org/content/articles/2019/06/graphene-what-is-it-good-for/

https://www.techradar.com/news/with-this-graphene-jacket-youll-never-be-too-hot-too-cold-or-too-smelly

https://www.sciencetimes.com/articles/22914/20190622/using-graphene-and-tiny-droplets-to-detect-stomach-cancer-causing-bacteria.htm

Advertisements

The 3D printed robot hand

Posted on Updated on

The 3D printed robot hand, developed by researchers at the University of Cambridge. It has soft and rigid materials together to replicate all the bones and ligaments.

According to Ph.D. student Josie Hughes from Cambridge’s Department of Engineering, “We can use passivity to achieve a wide range of movement in robots- walking, swimming or flying, for example, Smart mechanical design enables us to achieve the maximum range of movement with minimal control costs. We wanted to see just how much movement we could get with mechanics alone”. She is the paper’s first author.

http://www.eng.cam.ac.uk/news/3d-printed-robot-hand-plays-piano

3-D printing with Cellulose

Posted on Updated on

According to John Hart and Sebastian Pattinson, a former postdoc in mechanical engineering who is now a lecturer at the University of Cambridge in the U.K., “demonstrated a technique using the world’s most abundant natural polymer-cellulose. at MIT,” says early education on 3-D printing is the key to helping the technology expand as an industry. They are very much enjoyed creating and teaching the course and they are proud of what the students did, and what it means about the future potential of additive manufacturing.
Cellulose offers many advantages over current plastics-based feedstocks: It’s inexpensive, renewable, biodegradable, mechanically robust, and chemically versatile. In addition, it’s widely used in pharmaceuticals, packaging, clothing, and a variety of other products, many of which could be customized using 3-D printing”.

 

http://mit.edu/

Home

http://news.mit.edu/2018/mit-researchers-accelerating-3d-printing-using-renewable-materials-1129