Tesla 3D Printing Electric Vehicles Automotive Technology Manufacturing Innovation Gigafactories EV Production Elon Musk Automotive Revolution Industrial Sand Casting

Tesla’s stealthy 3D Printing revolution in electric Car manufacturing.

Posted on Updated on

In the bustling world of electric car manufacturing, Tesla has always been at the forefront of innovation. While they’ve consistently pushed boundaries with their electric vehicle (EV) technology, there’s something quietly groundbreaking happening behind the scenes—Tesla’s foray into 3D printing for car bodies. Elon Musk, the visionary CEO of Tesla, has a penchant for unconventional production methods. He champions what he calls “unboxed” production, assembling large sub-units of a car and seamlessly connecting them. This approach is in stark contrast to traditional car manufacturing, which involves hundreds of small, intricately assembled parts.

Tesla’s journey into unorthodox manufacturing began with “giga casting,” a technique where they use ultra-high-pressure presses to mold substantial parts of a car. They’ve been doing this long before other automakers even considered it. However, Tesla is now taking things up a notch by experimenting with colossal presses that can potentially cast the entire car body. The secret sauce in Tesla’s new manufacturing process lies in the fusion of 3D printing and industrial sand—a revelation from inside sources reported by Reuters. Although the specifics remain undisclosed, here’s how it works: Tesla creates a mold with 3D-printed solid sand cores inside. After the casting process is complete, the sand cores are removed, leaving behind a hollow subframe that provides structural integrity. This ingenious method offers Tesla significant flexibility in terms of cost, design alterations, and production speed, a luxury not afforded by traditional metal molds.

If successfully scaled up, this innovation could propel Tesla closer to Elon Musk’s ambitious goal of halving production costs. To put it in perspective, think of Apple’s unibody design for its laptops, where an entire product’s structure is machined from a single block of aluminum. This approach dramatically reduces assembly costs. Now, let’s dive into the numbers. To mold the front and rear structures of its Model Y, Tesla currently applies clamping pressures of 6,000 to 9,000 tons in its “gigacasting” process. Using this method, they can produce a Model Y in a mere 10 hours, nearly three times faster than their competitors. However, Tesla’s new technique would require even more substantial clamping pressures, estimated at 16,000 tons or more, demanding more factory space. This aligns with Tesla’s expansion plans, including doubling the size of its Berlin factory and establishing plants in India.

Traditionally, car manufacturing relies on around 400 parts, but Tesla’s “gigacasting” approach aims to replace these with a streamlined process. Additionally, Tesla has set its sights on launching an affordable EV priced at $25,000 by 2025. One remarkable aspect is the cost-effectiveness of this approach. Building a large-scale mold from scratch can cost a staggering $4 million, and making changes to an existing mold after initial testing can still set a company back $1.5 million. In contrast, Tesla could potentially develop a car from scratch using the new technique in just 18-24 months, a fraction of the 3-4 years most competitors require. While the identity of Tesla’s collaborators for this innovative endeavor remains undisclosed, they’ve previously worked with the IDRA Group for their existing processes. This historic machine manufacturer has been in operation for seven decades and has been crafting giga presses since 2015. Interestingly, IDRA was the only one among the world’s six major manufacturers to accept Musk’s request to create the massive casting machine required for Tesla’s cars.

As Tesla quietly pioneers the future of electric car manufacturing, we can only anticipate the ripple effect this revolution will have on the industry. They’re not just building cars; they’re transforming the way cars are made.