NASA

Relativity Space to build the first rocket 3D Printing factory

Posted on Updated on

With backing from NASA, rocket startup Relativity Space is creating the first autonomous rocket factory. The company is planning to produce 95% of rocket components with 3D printing, and the first orbital launch is expected in late 2020.

 

This is a guest contribution by Egor Driagin, Chief Marketing Officer at Top 3D Shop

945ded0efc2bbdd1218a19408314360c-1

Source: www.relativityspace.com

The new agreement will provide the California-based startup with exclusive access to NASA’s infrastructure and financial aid from the Mississippi Development Authority for building a large-scale highly automated 3D printing rocket factory. The company will lease a 20,000-square-meter building at NASA’s John C. Stennis Space Center for nine years. The test stands and all the necessary equipment on the site allow for convenient engine testing. The agreement provides an option to extend the lease for another 10 years. The company aims to create 200 jobs and invest $59 million in the state. In exchange, the state of Mississippi offers a reimbursement of expenses and a tax incentive package.

image2.jpgSource: www.relativityspace.com

a0033217f0471ef7d2e224c9d0cf831a

The new factory will produce Relativity Space’s first 3D printed rocket – Terran 1. This vehicle can carry up to 2,756 lbs. into low Earth orbit. Both stages will be powered by 3D printed Aeon engines fueled by methane and liquid oxygen. The first stage will be powered by nine engines, stage two will be equipped with only one. The rocket is priced at $10 million per launch. It is expected that due to the use of the 3D printing technology the manufacturing cycle will not exceed 60 days. 

Although the company is planning to construct its own launch facility, the first rockets will be launched from Cape Canaveral. The launchpad and all the supporting infrastructure will be provided by the U.S. Air Force. The company was allowed to use Launch Complex (LC) 16, which was built for tests of Titan I and Titan II, and then Pershing I and Pershing II missiles. The last launch took place there in 1988. 

image3.png

1d37435aa0f0ef3ce7e22a0ca47f7a83-1

 

Source: www.relativityspace.com

Most of the metal parts will be manufactured by Stargate, Relativity Space’s first 3D printer. The scalable system features multi-axis robotic arms with lasers. The machine uses metal wire feedstock as a printing material. In February 2019, Relativity Space was granted a machine learning 3D metal printing patent, issued for “real-time adaptive control of additive manufacturing processes using machine learning” (US20180341248A1).

“This agreement demonstrates again NASA’s commitment to work with our industry partners to expand commercial access to low Earth orbit. This helps NASA maintain focus on the ambitious Artemis program that will land the first female and the next male on the south pole of the Moon by 2024,” said Rick Gilbrech, director of  Stennis Space Center. “Relativity is a valuable member of the Stennis federal city and we look forward to building on our already successful partnership.”

The first orbital launch is expected in 2020. The company is planning to enter the commercial market in 2021.

 

3D-printing a lunar base

Posted on Updated on

According to European Space Agency, ESA, “Could astronauts one day be printing rather than building a base on the Moon? In 2013 ESA, working with industrial partners, proved that 3D printing using lunar material was feasible in principle. Since then, work continues to investigate the technique. The shielding against radiation provided by a 3D-printed block of simulated lunar regolith was measured, providing important inputs for next-stage designs.”
According to ESA(Now),” astronaut Luca Parmitano has arrived on the International Space Station following a six-hour flight in the Russian Soyuz MS-13 spacecraft alongside NASA astronaut Drew Morgan and Roscosmos cosmonaut Alexander Skvortsov.”

From comments,

4 years ago

This is all good except the “3d printing material” should be the regolith itself melted by focused solar energy. This way the printers could print an inexhaustible™ supply of infrastructure from roads to sinks to rail-launch systems and so on. You would want one specialized printer for printing the things that can’t be made from regolith. (control circuits, actuators, etc.)

I really hope NASA and ESA team up to explore the rest of our solar system and beyond.

3Years ago
Nice, would be able to put an observatory on the moon and make it a refuel station for further travel and a back up for rescue if needed also can make a shipbuilding/repair station safer launches don’t have to fight the gravity and atmosphere burn up, can also make a relay station put a full array of satellites on the moon.
It would be simpler and cheaper to ship high explosives to the moon and use them to excavate a cylindrical chamber into the side of a large crater (like building a tunnel on earth) and then seal off the end, pressurize, and occupy. Much roomier, more protection from radiation and meteor impacts. This 3-D printer idea is dull and uninspiring.
This is great news potentially. I hope one day we can live in space or the moon.

Now
2019: HASSEL wants to print a 3D mars base.

 

Why 3D printing could be key to a Moon base

 

ESA’s Purpose

MEET ASTRONAUT LUCA PARMITANO